Uncovering Halide Mixing and Octahedral Dynamics in Cs₂SnX₆ by Multinuclear Magnetic Resonance Spectroscopy

Victor Arturo Mora Gomez and Vladimir K. Michaelis

Department of Chemistry, University of Alberta, AB. Email: moragome@ualberta.ca

 Cs_2SnX_6 (X = Cl, Br, I) have emerged as promising lead-free and ambient-stable materials for photovoltaic and optoelectronic applications. To advance these promising materials, it is crucial to determine the correlations between physical properties and their local structure and dynamics. Solid-state NMR spectroscopy of multiple NMR-active nuclei (133Cs, 119Sn and 35Cl) in these cesium tin(IV) halides has been used to decode the structure, which plays a key role in the materials' optical properties. The ¹¹⁹Sn NMR chemical shifts span approximately 4000 ppm and the ¹¹⁹Sn spin-lattice relaxation times span three orders of magnitude when the halogen goes from chlorine to iodine in these diamagnetic compounds. Moreover, ultrawideline ³⁵CI NMR spectroscopy for Cs₂SnCl₆ indicates an axially symmetric chlorine electric field gradient tensor with a large quadrupolar coupling constant of ca. 32 MHz, suggesting a chlorine that is directly attached to Sn(IV) ions. Variable-temperature ¹¹⁹Sn spin lattice relaxation time measurements uncover the presence of hidden dynamics of octahedral Snl_6 units in Cs_2Snl_6 with a low activation energy barrier of 12.45 kJ/mol (0.129 eV). We further show that complete mixed-halide solid solutions of $Cs_2SnCl_xBr_{6-x}$ and $Cs_2SnBr_xl_{6-x}$ (0 <= x <= 6) form at any halogen compositional ratio. ¹¹⁹Sn and ¹³³Cs NMR spectroscopy resolve the unique local $SnCl_nBr_{6-n}$ and $SnBr_nl_{6-n}$ (n = 0–6) octahedral and $CsBr_ml_{12-m}$ (m = 0-12) cuboctahedral environments in the mixed-halide samples. The experimentally observed ¹¹⁹Sn NMR results are consistent with magnetic shielding parameters obtained by density functional theory computations that were obtained to model the random halogen distribution in mixed-halide analogues. Finally, we demonstrate the difference in the local structures and optical absorption properties of Cs₂Snl₆ samples prepared by solvent-assisted and solvent-free synthesis routes.